What if Gauss had had a computer?

Paul Zimmermann, INRIA, Nancy, France

Celebrating 75 Years of Mathematics of Computation, ICERM, Brown University, Providence, November 1st, 2018

Carl Friedrich Gauss, Werke, Volume 2, 1863, pages 477-502:
TAFEL

7.UR

CYKLOTECHNIE.

Naยnzass, zerzeabalis aa+1.

215	119	73.97		500 :33.53.89	1341	73.189.113	3405: 29.29.61.133
315	1. 123	5.17.89		507 5.5.53.97	${ }_{7} 1385$	41.149.157	: 3458 (5.73 .888 .485
417	128	5.29.123		513:5.13.37.109	11393	5.5.197.197	. 3521 : 29 37.53.109
513	129	53.157		515 13.101.101	, 1497	5.5.17.17.137	3532 (5.5.17.149.197
$6: 37$	132	5-5.17.41		534137.41 .181	(1432	5.5.5.5.17.193	; 3583 ; 5.13.17.37.157
${ }_{4} 5.5$	133	5.29.61		538 5.13.61.73	1433	5.29.73.97	$\therefore 3740$ ¢ 41.42 .53 .257
8 8 5.13	142	5.37.509		557: 5.5.5.17.73	1467	5.29-41.181	3782 : 5.5.79.109.181
$9{ }^{9}+$	157	5.5.17.29		560 ${ }^{5} \mathbf{5 3 . 6 8 . 9 7}$	${ }_{1}^{1} 18479$	9.13.97.143	${ }^{*} 3793$; 5.5.53.61.89
$1 0 \longdiv { 1 0 1 }$	163	5.29.181		568 $5 \cdot 5 \cdot 5 \cdot 29.89$	${ }_{1} 1560$	17.37.53.73	3951, 5.5.13.13.17.150
11 \| 61	172	5.61.97		5"1) 5.13 .13 .197	1567	5.41.53.113	4193 : 5-5.5.5.5.29.97
12 15.29	173	5.41 .73		59917.61 .273	1. 1568	5.5.5.13.17.89	4217 5.13.29.53.89
13 5.17	174	13.17 .137		606 13.13.41.53	1597	5.3\%.61.113	4232 - 5.5.41.101.173
$14 \cdot 197$	182	5.5.5.5.53		61613.17 .17 .101	1607	5.5.13.29.137	$424^{6} \quad 13.2 \% . .59 .29 .97$
15113	183	5.17.197		631 29.61.109	1636	17.29.61.89	: 4327 5.89.169.193
1- 5.29	185	109. 357		657 5-5.89.97	- 1744	137.149.149	C4484 1789.97137
18 : 5.5.13	191	17.29.37		660 37.61.393	$\because 2772$	5.17.17.41.93	: 4533 : 17.53 .101 .143
19:881	192	5.73.101		68: $5 \cdot 3 \cdot 5.61 .6 \mathrm{x}$	1818	5.5.5.137.193	4545 13.37.199.197
21 13.17	193	5.5.5.149		684 13.17.29.73	: 1823	5.15..113.173	4 4581 13.53.97.157
22 5-97	$\pm \infty$	13.17.181		693 5.5.5.17.113	: 1837	5.5.1 1.53 .149	\% 4594 :13.17.29.3\%.89
lecs	$\rightarrow{ }^{\prime \prime}$	112.100		607 : 2.12.27.101	1802	c.5.19.27.140	2662 , 5.12.12.10.1\%.80

Page 481

5i2.3.7
13.5.8. 18. 57. 239

1:.4. 13. 21. 38. 47. 268
29 12. 1\%. 41. 70. 99, 157. 307
3:.6.31. 43. 68. 117. 191. 302. 327. 882. 18543*
41, 9. 32. 73. 132, 278. 378. 829. 993. 2943
$53 \mid 23$. 30. 83. 182. 242. 401. 447. 6с6. 931. 1143*, 1772. 6228. 34208, 44179. 85353. 485298

89 34. 55. 123. 233. 411. 500. 568. 746. 1568, 1636*, 3793. 4217. 4594. 4662. 6107. 11982. 19703. 24263. 32807.

$97 \mid 22.75,119,172,216,463,507,560,657,1433^{=}, 1918,2059,2738,4193 \cdot 4246,5357 \cdot 550 \%, 5648$. 6962. 9193 ${ }^{2}$.
 3449251. 6225244
 66347. 71-0. 74043. 173932. 177144. 508929. 683982, 1635786. 2478328. 2809305* 3014557.6367252. 18975991. 193788912. 101329582, 2189376182

Page 501

$$
\begin{array}{rlrl}
\text { Machin } & (1) & =4(5)-(239) & \text { auch Clauskn } \\
\frac{\pi}{4}=4 \arctan \frac{1}{5} & -\arctan \frac{1}{239} \quad(\text { Machin, 1706) } \\
\text { Gause. 1. } & =12(28)+8(59)-5(239) \\
\text { Gives. 2. } & =\mathbf{2}(38)+30(57)+7(239)+24(268)
\end{array}
$$

$$
\begin{align*}
& \frac{\pi}{4}=12 \arctan \frac{1}{18}+8 \arctan \frac{1}{57}-5 \arctan \frac{1}{239} \quad \text { (Gauss, 1863) } \\
& \frac{\pi}{4}=12 \arctan \frac{1}{38}+20 \arctan \frac{1}{57}+7 \arctan \frac{1}{239}+24 \arctan \frac{1}{268} \quad \text { (Gauss, } 1 \tag{Gauss,1863}
\end{align*}
$$

Plan of the talk

- how such identities can be verified
- how they can be (re)discovered
- by hand and using modern computational mathematics tools

Nachlass, zerweaball aa+1.

215	119! 93.97	500:33.53.89	1314	33.189 .113	3405:29.29.61.133
$3{ }^{3} 5$	C. $133: 5.17 .89$	507 5.5.53.97	11385	41.149.157	:3458:5.73.188.485
417	128 [5.39.123	513:5.13.37.109	$1 \begin{aligned} & 1393\end{aligned}$	5.5.197.197	3521:39 37.53.109
5 5:13	139 53.157	515 13.101.102	, 1487	5.5.17.17.13?	3532 5.5.17.149.19n
$6: 37$	132 (5.5.17.41	524 17.41.181	: 1432	5.5.5.5.17.193	1 3583 ; 5.13.17.37.157
7 ¢5.5	133 5.29.61	538 (5.13.61.73	11433	5,19.73.97	$\therefore 3740$ 141.41.53.157
8 8.13	142 5.37.509	557 '5.5.5.17.73	1467	5.39.41.181	$3782: 5.5 .79 .109 .381$
$9{ }^{6}+1$	$\therefore 15 \% \mid 5.5 .17 .29$	- 560 : 53.68 .97	${ }_{1}^{1} 18479$	9.13.97.173	* 3793 '5.5.53.61.89
10) icl	163 5.29.181	568 5.5.5.29.89	${ }_{1} 1560$	17.37.53.73	$\therefore 395 \%$ ' 5-5.13.13.17.189
11 ¢ 61	173 5.61.97	$5{ }^{71} 15.13 .23 .197$	${ }^{1567}$	5.41.53.113	4193 : 5-5.5.5.5-29.97
12 15.29	173 5.41.73	59915.62 .273	1. 1568	5.5.5.13.17.89	$4217 \quad 3.43 \cdot 29.53 .89$
13 3.17	17413.17 .137	606113.13 .41 .53	1597	5.3:-61.113	4232 - 5.5.41.101.173
$14 \cdot 197$	$18295 \cdot 5 \cdot 5 \cdot 5.53$	61613.17 .17 .101	1607	5-5.13.29.137	$42+6$ 13.27.29.29.97
15113	$183: 5.17 .197$	631 29.61.109	1636	1 1.29 .61 .89	: 4327 5.89.109.193
z^{-}5.79	$185: 109.357$	657 5-5.89.97	$\therefore 1744$	137.149.149	$\because 4484.1789 .97137$
18 : 5.5.13	191 17.29.37	660 37.61.393	$\because 2772$	5.17.17.41.93	: $4533: 17.53 .101 .113$
19:182	192 5.73.101	688 $5 \cdot 5 \cdot 5.6 \mathrm{t} .6 \mathrm{x}$	1818	5.5.5.137.193	4545 13.37.199.197
$21{ }^{18.1 \%}$	193 5.5.5.149	68413.14 .29 .73	1823	5.14, 1113.1\%3	4581 13.53.97.157
22 15.97	200 13.17 .181	693 5.5.5.17.113	. 1837	5.5.1:-53.149	$4594!13.17 .29 .37 .89$
4, le,es	$\rightarrow 81112.100$	607 : 2.12.29.101	1802	c.5.19.27.14	1662, 5.12.12.1".1\%.8u

sage: $a=4594 ;$ factor $\left(a^{\wedge} 2+1\right)$
$13 * 17 * 29 * 37 * 89$

-. 2971354082 5.5.13.17.29.41.53.53.1 13.14915 ..182 3955080927 i $5.13 .17 .17 .17 .17 .53 .53 .61 .61 .101 .149 .143 .19^{*}$ 8193535810 13.13.29.29.61.189.120. $1.37 .150 .45 \div .403$ 14033378718 . 5.5.13.13,17.17.61.61.62.61.7.75.23.157.181
sage: factor $\left(14033378718^{\sim} 2+1\right)$
$5^{\wedge} 2 * 13 * 17^{\wedge} 2 * 61^{\wedge} 4 * 73^{\wedge} 2 * 157 * 181$
Even Gauss made errors...

Page 481

```
    S! 2. 3. 7
43.5.8. 18. 57. 239
```



```
29 12. 17, 41. 70. 99. 257. 307
37. 6. 31. 43. 68. 117. 191. 302. 327. 882. 18543*
41. 9. 32. 73. 332. 278. 378. 829. 993. 2943
```



```
89 34. 55. 123. 233. 411. 500. 568. 746. 1568. 1636*. 3793. 4217. 4594. 4662. 6107, 11981. 19703. 24263. 32807.
        \(37 \pi \div C^{*} .45068 .5138 \%\), 99557. 157318. 260359. 24208144
```



```
        3449~51. 6225244
101
```



```
        18975991. 193788912. 20:229582, 2:89376182
199 : 33. 76. 142. 251. 294. 360. 512. 621. 965. 948*, 1057. 1123, 1929. 2801, 3521, 3957. 5701, 6943. 8578. 9298*.
```

sage: [a for a in [1..10~4] if largest_prime (a^2+1) == 5] $[2,3,7]$
sage: [a for a in [1..10^4] if largest_prime(a^2+1) == 13] [5, 8, 18, 57, 239]
sage: [a for a in [1..10~4] if largest_prime (a^2+1) == 109] [33, 76, 142, 251, 294, 360, 512, 621, 905, 948, 1057, 1123, 1929, 2801, 3521, 3957, 5701, 6943, 8578, 9298]

Page 501

```
Machin \(\quad(1)=4(5)-(239) \quad\) auch Clausem
Eulza \(\quad=(2)+(3) \quad\) (Euler à Goldaacu 1746 Mai 28 )
Veas \(\quad=5(\pi)+3\left(\frac{79}{3}\right) \quad\) (Vroa Thesaurus logar. p. 633)
Vran \(\quad=2(3)+(7)\) auch Claubsm (Astr. Nachr. B. 25. S. 309)
Rerubrvord \(=4(5)-(70)+(99) \quad\) (Philos. Trans. 8841. p. 283)
Dabs \(\quad=(2)+(5)+(8) \quad\) (Crelle Journal. B. 27. S. 298)
Gaus8. 1. \(=12(18)+8(57)-5(239)\)
Giceas. 2. \(=12\left(3^{8}\right)+30(57)+7(239)+24(268)\)
```

Notation: (n) or $[n]$ denotes $\arctan \frac{1}{n}$.

Measure of an arc-tangent identity

Lehmer proposes in 1938 the following measure. For example, Machin's formula

$$
\frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239}
$$

has measure

$$
\frac{1}{\log _{10} 5}+\frac{1}{\log _{10} 239} \approx 1.8511
$$

A formula with measure say 2 needs two terms of the arc-tangent series to get one digit of π :

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7} \cdots
$$

Machin (1706, measure 1.8511):

$$
\frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239}
$$

Gauss (1863, measure 1.7866):

$$
\frac{\pi}{4}=12 \arctan \frac{1}{18}+8 \arctan \frac{1}{57}-5 \arctan \frac{1}{239}
$$

Gauss (1863, measure 2.0348):

$$
\frac{\pi}{4}=12 \arctan \frac{1}{38}+20 \arctan \frac{1}{57}+7 \arctan \frac{1}{239}+24 \arctan \frac{1}{268}
$$

Why is the arc-tangent series so popular?

$$
\begin{gathered}
\arctan \frac{1}{n}=\frac{1}{n}-\frac{1}{3 n^{3}}+\frac{1}{5 n^{5}}-\cdots \\
10^{15} \arctan \frac{1}{239} \approx \frac{10^{15}}{239}-\frac{10^{15}}{3 \cdot 239^{3}}+\frac{10^{15}}{5 \cdot 239^{5}} \\
\left\lfloor\frac{10^{15}}{239}\right\rfloor=4184100418410 \\
\left|\frac{4184100418410}{239^{2}}\right|=73249775, \quad\left\lfloor\frac{73249775}{3}\right\rfloor=24416591 \\
\left\lfloor\frac{73249775}{239^{2}}\right\rfloor=1282, \quad\left\lfloor\frac{1282}{5}\right\rfloor=256 \\
10^{15} \arctan \frac{1}{239} \approx 4184100418410-24416591+256=4184076002075
\end{gathered}
$$

2-term identities

$\frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239}$

$$
\frac{\pi}{4}=2 \arctan \frac{1}{3}+\arctan \frac{1}{7}
$$

$$
\frac{\pi}{4}=2 \arctan \frac{1}{2}-\arctan \frac{1}{7}
$$

$$
\frac{\pi}{4}=\arctan \frac{1}{2}+\arctan \frac{1}{3}
$$

(Machin, 1706, measure 5.4178)

Störmer proved in 1899 these are the only ones of the form $k \pi / 4=m \arctan (1 / x)+n \arctan (1 / y)$.

3-term identities

The one with best measure (with numerators 1) is due to Gauss (1863, measure 1.7866):

$$
\frac{\pi}{4}=12 \arctan \frac{1}{18}+8 \arctan \frac{1}{57}-5 \arctan \frac{1}{239}
$$

Störmer found 103 3-term identities in 1896, Wrench found two more in 1938, and Chien-lih a third one in 1993. Their exact number remains an open question.

4-term identities

The one with best measure (with numerators 1) is due to Störmer (1896, measure 1.5860):
$\frac{\pi}{4}=44 \arctan \frac{1}{57}+7 \arctan \frac{1}{239}-12 \arctan \frac{1}{682}+24 \arctan \frac{1}{12943}$
It was used by Kanada et al. in 2002 to compute
$1,241,100,000,000$ digits of π.

The second best was found by Escott in 1896 (measure 1.6344), the third one by Arndt in 1993 (1.7108).

Computation of π

1962: Shanks and Wrench compute 100, 265 decimal digits of π using Störmer's formula (1896, measure 2.0973):

$$
\frac{\pi}{4}=6 \arctan \frac{1}{8}+2 \arctan \frac{1}{57}+\arctan \frac{1}{239}
$$

The verification was done with Gauss' formula:

$$
\frac{\pi}{4}=12 \arctan \frac{1}{18}+8 \arctan \frac{1}{57}-5 \arctan \frac{1}{239}
$$

The first check did agree only to 70,695 digits, due to an error in the computation of $6 \arctan (1 / 8)$!
This was published in volume 16 of Mathematics of Computation. Pages $80-99$ of the paper give the 100,000 digits.

1973: Guilloud and Boyer compute 1, 001, 250 digits using the same formulae.

Computation of π (continued)

2002: Kanada et al. compute $1,241,100,000,000$ digits using the self-checking pair

$$
\begin{aligned}
& \frac{\pi}{4}=44 \arctan \frac{1}{57}+7 \arctan \frac{1}{239}-12 \arctan \frac{1}{682}+24 \arctan \frac{1}{12943} \\
& \text { and }
\end{aligned}
$$

$\frac{\pi}{4}=12 \arctan \frac{1}{49}+32 \arctan \frac{1}{57}-5 \arctan \frac{1}{239}+12 \arctan \frac{1}{110443}$.

How to verify such identities with a computer?

$$
\arctan x+\arctan y=\arctan \frac{x+y}{1-x y}
$$

Let us check Machin's formula

$$
\frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239}
$$

sage: combine $(x, y)=(x+y) /(1-x * y)$
sage: combine $(1 / 5,1 / 5)$
5/12

Thus

$$
2 \arctan \frac{1}{5}=\arctan \frac{5}{12}
$$

sage: combine(5/12,5/12)
120/119

Thus

$$
4 \arctan \frac{1}{5}=\arctan \frac{120}{119}
$$

sage: combine(120/119,-1/239)
1

Thus

$$
4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\arctan 1=\frac{\pi}{4}
$$

We can "multiply" an arc-tangent by a positive integer n :
sage: muln $=$ lambda $x, n: x$ if $n==1$ else combine $(x, m u l n(x, n-1))$

Then we get:
sage: muln $(1 / 5,4)$
120/119
and:
sage: combine(muln $(1 / 5,4),-1 / 239)$
1

Symbolic transformations

sage: muln(1/x,2).normalize()
$2 * x /\left(x^{\wedge} 2-1\right)$

$$
2 \arctan \frac{1}{x}=\arctan \frac{2 x}{x^{2}-1}
$$

sage: muln(1/x,3).normalize()
$\left(3 * x^{\wedge} 2-1\right) /\left(\left(x^{\wedge} 2-3\right) * x\right)$
$3 \arctan \frac{1}{x}=\arctan \frac{3 x^{2}-1}{x^{3}-3 x}$

$$
\begin{aligned}
& \text { sage: muln }(1 / x, 4) \cdot \text { normalize }() \\
& 4 *\left(x^{\wedge} 2-1\right) * x /\left(x^{\wedge} 4-6 * x^{\wedge} 2+1\right)
\end{aligned}
$$

$$
4 \arctan \frac{1}{x}=\arctan \frac{4 x\left(x^{2}-1\right)}{x^{4}-6 x^{2}+1}
$$

How to discover such identities?

- experimentally with Pari/GP lindep
- with Gaussian integers
- a direct method using integers only

Playing with Pari/GP lindep

On page 481 , Gauss writes for $p=5,13, \ldots$ which $a^{2}+1$ have p as largest prime factor:

5!2.3.7
 13'5. 8. 18. 57. 239

We can (re)discover some identities using Pari/GP as follows:

```
? lindep([atan(1/2),atan(1/3),Pi/4])
%7 = [-1, -1, 1]~
? lindep([atan(1/5),atan(1/8),atan(1/18),Pi/4])
%9 = [-3, -2, 1, 1]~
? lindep([atan(1/8),atan(1/18),atan(1/57),Pi/4])
%11 = [-5, -2, -3, 1] ~
? lindep([atan(1/18),atan(1/57),atan(1/239),Pi/4])
%13 = [-12, -8, 5, 1]~
```

Take all numbers a such that $a^{2}+1$ has all its factors ≤ 13 :
? lindep([atan(1/2), atan(1/3), atan(1/5), atan(1/7), atan(1/8), $\operatorname{atan}(1 / 18), \operatorname{atan}(1 / 57), \operatorname{atan}(1 / 239), \mathrm{Pi} / 4])$
$\% 1=[-1,1,0,1,0,0,0,0,0] \sim$
Thus $\arctan (1 / 2)=\arctan (1 / 3)+\arctan (1 / 7)$:
sage: combine(1/3,1/7)
1/2
We can thus omit $\arctan (1 / 2)$.
? lindep $([\operatorname{atan}(1 / 3), \operatorname{atan}(1 / 5), \operatorname{atan}(1 / 7), \operatorname{atan}(1 / 8), \operatorname{atan}(1 / 18)$, $\operatorname{atan}(1 / 57), \operatorname{atan}(1 / 239), \mathrm{Pi} / 4])$
$\% 2=[-1,1,0,1,0,0,0,0] \sim$
Thus $\arctan (1 / 3)=\arctan (1 / 5)+\arctan (1 / 8)$:
sage: combine(1/5,1/8)
$1 / 3$
We can thus omit $\arctan (1 / 3)$.
? lindep $([\operatorname{atan}(1 / 5), \operatorname{atan}(1 / 7), \operatorname{atan}(1 / 8), \operatorname{atan}(1 / 18), \operatorname{atan}(1 / 57)$, $\operatorname{atan}(1 / 239), \mathrm{Pi} / 4])$
$\% 3=[-1,1,0,1,0,0,0] \sim$
Thus $\arctan (1 / 5)=\arctan (1 / 7)+\arctan (1 / 18)$.
? lindep([atan(1/7), atan(1/8), atan(1/18), atan(1/57), atan(1/239), Pi/4])
$\% 4=[-1,1,0,1,0,0] \sim$
Thus $\arctan (1 / 7)=\arctan (1 / 8)+\arctan (1 / 57)$.
? lindep([atan(1/8), atan(1/18), atan(1/57), atan(1/239), Pi/4])
$\% 5=[1,-2,-1,1,0] \sim$
$\arctan (1 / 8)=2 \arctan (1 / 18)+\arctan (1 / 57)-\arctan (1 / 239)$.
? lindep([atan(1/18), atan(1/57), atan(1/239), Pi/4])
$\% 6=[-12,-8,5,1] \sim$
We find Gauss' 1st formula:

$$
\frac{\pi}{4}=12 \arctan \frac{1}{18}+8 \arctan \frac{1}{57}-5 \arctan \frac{1}{239}
$$

Reducible and irreducible arctangent

We say that $\arctan (1 / n)$ is reducible if it can be expressed as a linear combination of smaller arctangents. Otherwise it is irreducible.
For $1 \leq n \leq 20$, we have 6 reducible arctangents:

$$
\begin{gathered}
{[3]=[1]-[2]} \\
{[7]=-[1]+2[2]} \\
{[8]=[1]-[2]-[5]} \\
{[13]=[1]-[2]-[4]} \\
{[17]=-[1]+2[2]-[12]} \\
{[18]=[1]-2[2]+[5]}
\end{gathered}
$$

Which primes p can divide $a^{2}+1$?

p divides $a^{2}+1$ is equivalent to $a^{2} \equiv-1 \bmod p$

Thus -1 should be a quadratic residue modulo p.
In other words the Jacobi symbol $\binom{-1}{p}$ should be 1 .
sage: [p for p in prime_range $(3,110)$ if (-1).jacobi(p$)==1]$ [5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109]

We find the primes appearing on the bottom of page 481.

By the first supplement to quadratic reciprocity, only 2 and primes of the form $4 k+1$ can appear.

How to find the $a^{2}+1$ with largest factor p ?

```
sage: def largest_prime(n):
....: l = factor(n)
....: return l[len(1)-1][0]
```

sage: largest_prime(1001)
13
sage: def search(p, B):
....: for a in range(1,B):
....: if largest_prime (a^2+1)==p:
print a
sage: search(5,10~6)
2
3
7

Faster way of searching: if p divides $a^{2}+1$, then $r:=a \bmod p$ is one of the roots of $x^{2}+1 \bmod p$:
sage: def search2 (p, B) :
....: $\quad r=\left(x^{\wedge} 2+1\right) . \operatorname{roots}(r i n g=G F(p))$
....: for t, in r :
....: for a in range($Z Z(t), B, p):$
....: if largest_prime (a^2+1)==p:
print a
sage: search2(5,10^6)
3
2
7

We check only 2 values out of p.

Gaussian Integers

Gaussian integers are of the form $a+i b$, with $a, b \in \mathbb{Z}$.

They form an unique factorization domain, with units $\pm 1, \pm i$.

$$
17+i=-i(1+i)(2+i)(5+2 i)
$$

sage: ZZI.<I> = GaussianIntegers()
sage: factor (17+I)
(I) $*(-I-2) *(I+1) *(2 * I+5)$

A Gaussian integer like $5+2 i$ that cannot be factored is called irreducible.

The Gaussian Integers Method

A term $\arctan \frac{b}{a}$ corresponds to the Gaussian integer $a+i b$.
A term $k \arctan \frac{b}{a}$ corresponds to $(a+i b)^{k}$.
A sum $\arctan \frac{b}{a}+\arctan \frac{d}{c}$ corresponds to $(a+i b)(c+i d)$.
We thus want to find a product of Gaussian integers whose argument is a (non-zero) multiple of $\pi / 4$.

Example:

$\arctan (1 / 2)+\arctan (1 / 3)=\arctan (1)$

Machin's formula in terms of Gaussian integers

sage: ZZI.<I> = GaussianIntegers()
sage: factor ((5+I) 4)
$(-3 * I-2) \wedge 4 *(I+1) \wedge 4$
sage: factor (239+I)
(I) $*(-3 * I-2) \wedge 4 *(I+1)$

Thus $4 \arctan (1 / 5)-\arctan (1 / 239)$ corresponds to $-i(1+i)^{3}$, i.e., to $9 \pi / 4$, i.e., $\pi / 4$ modulo 2π.
sage: $(5+I)^{\wedge} 4 *(239-I)$
$114244 * \mathrm{I}+114244$

Norm of Gaussian Integers

Definition: The norm of $a+i b$ is $N(a+i b):=a^{2}+b^{2}$.

The norm is multiplicative: if $a+i b=(b+i d)(e+i f)$, then $N(a+i b)=N(b+i d) N(e+i f)$.

$$
(b+i d)(e+i f)=(b e-d f)+i(b f+d e)
$$

$$
\begin{aligned}
N((b+i d)(e+i f)) & =(b e-d f)^{2}+(b f+d e)^{2} \\
& =(b e)^{2}+(d f)^{2}+(b f)^{2}+(d e)^{2} \\
& =\left(b^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)
\end{aligned}
$$

The Gaussian Integers Algorithm

The term $\arctan (1 / a)$ corresponds to Gaussian integers $a+i$, thus to the norm $a^{2}+1$.
If $a^{2}+1$ has only few small prime divisors, then $a+i$ can have only few irreducible factors, since their norm must divide $a^{2}+1$.
Algorithm:

- Input: a set S of primes, a bound A
- factor $a^{2}+1$ for a up to some bound A;
- identify those $a^{2}+1$ with only prime divisors in S;
- factor the corresponding Gaussian integers $a+i$;
- find linear combinations to cancel the exponents of irreductible factors other that $1+i$ (up to an unit).
With $S=\{2,5,13,17\}$, there are 15 values of a up to $A=10^{6}$:

$$
1,2,3,4,5,7,8,13,18,21,38,47,57,239,268
$$

This is related to the roots of $x^{2}+1$ modulo $2,5,13,17$:

```
sage: for p in [2,5,13,17]:
....: print p, (x^2+1).roots(ring=GF(p))
2 [(1, 2)]
5 [(3, 1), (2, 1)]
13 [(8, 1), (5, 1)]
17 [(13, 1), (4, 1)]
```

$a=268$ corresponds to the roots $3 \bmod 5,8 \bmod 13,13 \bmod 17$:
sage: crt([3, 8,13$],[5,13,17])$
268
sage: factor (268^2+1)
$5 \wedge 2$ * $13{ }^{\wedge} 2$ * 17

If we take the other root 4 modulo 17 , we get $a=463$, but $a^{2}+1$
has a spurious prime factor 97 :
sage: $\operatorname{crt}([3,8,4],[5,13,17])$
463
sage: factor (463~2+1)
2 * 5 * 13 * 17 * 97

Todd's reduction process

Idea: decompose $N+i$ into a product $\left(I_{1} \pm i\right)\left(I_{2} \pm i\right) \cdots\left(I_{k} \pm i\right)$.
Example for $N=580$:
sage: factor (580~2+1)
13 * 113 * 229
The least integer m such that $p=229$ divides $m^{2}+1$ is $m=l_{1}=107$.
If $N+I_{1}$ is divisible by p, then we take $I_{1}-i$, else we take $I_{1}+i$. We compute the next residue by multiplying by the conjugate and dividing by p :

```
sage: (580+I)*(107+I)/229
3*I + 271
```


Todd's reduction process (continued)

We continue the reduction from $271+3 i$:

```
sage: factor(271^2+3^2)
2 * 5^2 * 13 * 113
```

The least integer such that $p=113$ divides $m^{2}+1$ is $m=15$.
Since $271+3 \cdot 15$ is not divisible by 113 , we take $15+i$:
sage: $(271+3 * I) *(15-I) / 113 / 2$
-I + 18

At the end of Todd's reduction process we get:
$\arctan \frac{1}{580}=-\arctan 1+2 \arctan \frac{1}{2}-\arctan \frac{1}{5}+\arctan \frac{1}{15}-\arctan \frac{1}{107}$

Other identities

$$
\begin{aligned}
& \arctan \frac{1}{n}=\arctan \frac{1}{n+1}+\arctan \frac{1}{n^{2}+n+1} \\
& \arctan \frac{1}{n}=2 \arctan \frac{1}{2 n}-\arctan \frac{1}{4 n^{3}+3 n}
\end{aligned}
$$

If we use the latter in Machin's formula, we can replace $\arctan (1 / 5)$ by $2 \arctan (1 / 10)-\arctan (1 / 515)$, which gives:

$$
\frac{\pi}{4}=8 \arctan \frac{1}{10}-\arctan \frac{1}{239}-4 \arctan \frac{1}{515}
$$

discovered by the Scottish mathematician Robert Simson in 1723.

Conclusion

Gauss' work can be reproduced using modern computational tools.

We can provide algorithms to check or discover identities.

Using computers, we can find identities with large denominators.

But some open questions still remain...

References

https://gallica.bnf.fr/ark:/12148/bpt6k99402s/f483:
Gauss' factorization tables of $a^{2}+1, \ldots, a^{2}+4, a^{2}+81$
On Arccotangent Relations for π, Derrick H. Lehmer, The American Mathematical Monthly, 1938.

Calculation of π to 100,000 Decimals, Daniel Shanks and John W. Wrench, Jr., Mathematics of Computation, 1962.

Gaussian Integers and Arctangent Identities for π, Jack S. Calcut, American Math. Monthly, 2009.

Search for the "best" arctan relation, Joerg Arndt, workshop Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, 2006, www.jjj.de/arctan/arctanpage.html

On the derivation of Machin-like arctangent identities for computing π, Amrik S. Nimbran, The Mathematics Student, 2010.

References (continued)

Solution complète en nombres entiers de l'équation $m \arctan (1 / x)+n \arctan (1 / y)=k \pi / 4$, Carl Störmer, Bulletin de la SMF, 1899.
https://en.wikipedia.org/wiki/Machin-like_formula\# Derivation: Machin-like formula on Wikipedia
http://www.machination.eclipse.co.uk/: a database of Machin-like identities, by Hwang Chien-lih and Michael
R. Wetherfield

